

Ripken Foundation STEM Center

Curriculum Guidebook

INTRODUCTION

ABOUT THE CAL RIPKEN, SR. FOUNDATION

During his 37-year career with the Baltimore Orioles organization, Cal Ripken, Sr. taught the basics of the game and life to players big and small. After he passed away, his sons Cal and Bill recognized that not every child is lucky enough to have such a great mentor and role model. In this spirit, the Ripken family started the Cal Ripken, Sr. Foundation, a national 501(c)(3) nonprofit organization, in 2001.

By teaching kids how to make positive choices no matter what life throws at them, the Cal Ripken, Sr. Foundation strives to help underserved youth fulfill their promise and become healthy, self-sufficient, and successful adults.

ABOUT THE CAL RIPKEN, SR. FOUNDATION STEM PROGRAM

The Cal Ripken, Sr. Foundation provides programs, resources, training, and support to community-based youth organizations across the country that directly impact the lives of underserved kids. When it comes to the fields of Science, Technology, Engineering, and Math (otherwise known as STEM), we have created a program that makes STEM activities and learning easy for mentors at community-based youth organizations to implement.

We have developed Ripken Foundation STEM Centers to facilitate STEM learning with youth partners nationwide. Each Ripken Foundation STEM Center is equipped with this STEM curriculum guidebook paired with STEM Center products and activity kits which provide a comprehensive, experiential learning environment for kids. The activities in the guidebook are designed to offer mentors many ways to teach critical thinking and problem-solving skills, all while having fun.

GUIDING PRINCIPLES OF THE CAL RIPKEN, SR. FOUNDATION

Cal Ripken, Sr. was a player, coach, and manager in the Baltimore Orioles organization for nearly four decades. He developed great players and, more importantly, great people through his style of coaching which we use as our guiding principles at the Foundation. No matter what you are teaching, you can use these four key ideas as your guide:

Keep It Simple

Lessons on the field and in life are best learned when presented in a simple manner. Teach the basics and keep standards high.

Explain Why

By helping kids understand the connections between everyday decisions and real-life outcomes, we can help them make smarter choices for brighter futures.

Celebrate The Individual

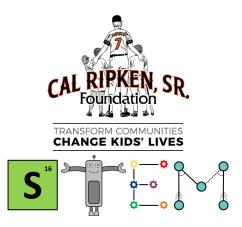
When kids are encouraged to be themselves, respected for their opinion, and are encouraged to share it, they are more likely to have a higher self-esteem and feelings of self-worth.

Make It Fun

If kids aren't paying attention or participating, how much are they learning? Whether it's using a game to teach a concept or motivating kids with a little friendly competition, keeping kids engaged is essential.

Want to hear Bill Ripken explain the guiding principles of the Foundation?

Go to http://www.RipkenFoundation.org and sign up for a free account today!



KEEPING KIDS ENGAGED

Here are some tips to help you structure activities that keep kids engaged, excited, and coming back:

- Have a plan
- Keep activities structured
- Provide feedback
- Encourage, encourage, encourage
- Allow kids opportunities to collaborate and learn from each other
- Set achievable goals
- Let kids be silly they're kids!
- Use short time increments and reminders
- Rotate activities frequently
- Let kids have input in the activities they like best
- Stay consistent and create routine
- Affirm kids when they do well

Ripken Foundation At-Home STEM Kits

Snap Circuits

Congratulations on your new Snap Circuits kit!

Snap Circuits from Elenco are a fun and engaging way to learn about circuitry and electronics. Using pre

https://www.elenco.com/

https://www.elenco.com/for-makers/

Facebook: SnapCircuits • Twitter: @SnapCircuits • Instagram: @SnapCircuits

Additional activities and resources are available at:

http://www.RipkenFoundation.org/Ripken-STEM-Kits

LESSONS

SNAP CIRCUITS ELECTRIC BINGO

OVERALL TIME 60-minute lesson

GROUPS Three to four kids per kit

Next Generation Science Standards

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. (Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound.)

(Energy 4PS3-4)

OBJECTIVE

- Identify and construct different types of circuits.
- Make connections to energy sources in real life.

OVERVIEW

Kids will engage in the basics of circuitry by building and drawing working electronic circuits.

MATERIALS

- Snap Circuit Kit & Resource Book
- STEM Circuit BINGO Board
- Pencils/Writing Utensils
- Batteries (AA)

KEY TERMS

Circuit: a complete and closed path around which electricity can flow.

Closed Circuit: an endless path for electricity to flow.

Conductor: an object or material that allows the flow of electrical current in one or more directions. **Insulator:** an object or material that allows little or no electricity to go through.

Negative: the negative pole of a storage battery.

Open Circuit: an electrical circuit that is not complete.

Parallel Circuit: a circuit which has two or more paths for electricity to flow.

Polarity: attraction toward a particular object or in a specific direction.

Positive: the positive pole of a storage battery.

Series Circuit: an electrical circuit in which electricity passes through components following one path.

Short Circuit: the failure of electricity to flow properly.

LAUNCH 5 to 10 minutes

Have kids stand in a circle. Ask the following question and give kids a moment to think.

What items do you see every day that use energy from electrical current?

Go around the circle and have each child share an example, trying not to repeat one that was already said. This activity represents how much we rely on electricity throughout a given day.

EXPLORATION 40 to 50 minutes

Provide each team with a STEM bingo board (see page 26). Using Snap Circuits, the team will need to work together to build various types of circuits working towards a blackout bingo board (all boxes filled in). Each box of the bingo board has a different type of circuit or Snap Circuits component the team must build or incorporate in the build. Once they have built the circuit, the group must write down an example of where they might see this in real-life. For example, the flying saucer is an example of a ceiling fan, whereas a light switch is an example of a circuit with a switch.

As kids are working, walk around to each of the groups.

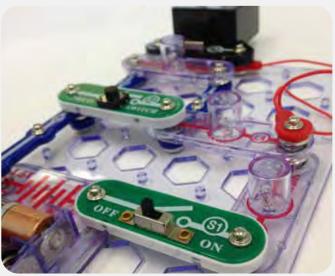
Possible questions to ask:

- What circuit are you building?
- What order are you connecting the parts?
- Can you trace the path the current flows through the circuit?

CLOSING 5 to 10 minutes

Allow kids time to clean up and organize the Snap Circuits.

Bring the group back together. Ask kids to find a partner and answer the following questions:


- What new learnings did you have?
- What circuits were challenging to make?
- Why?
- Was your team able to make real life circuit connections?

Choose a few partners to share aloud with the large group.

*Note: Have teams give each other a high five to celebrate their new learning.

ENRICHMENT AND NEXT STEPS

Allow kids to explore the Snap Circuits guidebooks and build as many circuits as they want. Challenge them to design their own and explain how it works.

SNAP CIRCUITS BINGO

Using Snap Circuits, build an example of each of the circuits listed below. Then in the box, write down a short description, sketch of the activity, and where have you seen an example of this in real life?

real life?		
COMPLETE CIRCUIT	FLYING SAUCER	MOTOR CIRCUIT
700		
FAN	FREE (YOUR CHOICE)	PARALLEL CIRCUIT
SWITCH CIRCUIT	SERIES CIRCUIT	SOUND

GET SNAPPED WITH SNAP CIRCUITS 3

OVERALL TIME 60- to 120-minute lesson

GROUPS Three to four kids per kit

Next Generation Science Standards

4PS3-4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

(Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound.)

(4PS3 Energy)

OBJECTIVE

- Identify and construct different types of circuits.
- Make connections to energy sources in real life.

MATERIALS

- Snap Circuit Kit (one per group)
- Snap Journal (one per person)
- Chart Paper

PREPARATION

Copy Snap Journals for the class.
On chart paper, write the challenge and requirements.

LAUNCH 5 to 10 minutes

Have kids form a circle. Ask them to think about what their life would be like without electricity. Are there things they would miss? Go around in a circle and have each kid name one thing.

EXPLORATION 40 to 90 minutes

Have kids form groups of three to four. Once kids are in groups, explain that they will be exploring and interacting with basic circuitry using Snap Circuits to perform a challenge. Introduce the challenge, requirements, and Snap Journal.

CHALLENGE

Create a circuit that includes the following: light, movement, and sound.

Requirements:

- · Groups will present their design.
- · All kids will complete a Snap Journal.
- Each group member will be responsible for answering one or more of the following questions during the presentation:
 - What is your Snap Circuit design?
 - Does your design include light, movement and sound?
 - Explain and demonstrate how the circuit works.
 - How did your team decide on this design?
 - Were there any challenges your team faced during this activity?
 - How did your team address these challenges?

CLOSING 15 to 25 minutes

Allow each team 3 to 5 minutes to present.

GET SNAPPED WITH SNAP CIRCUITS 4

OVERALL TIME 60- to 120-minute lesson

GROUPS Three to four kids per kit

Next Generation Science Standards

4PS3-4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. (Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound.) (4PS3 Energy)

OBJECTIVE

- Identify and construct different types of circuits.
- Make connections to energy sources in real life.

MATERIALS

- Snap Circuit Kit (one per group)
- Snap Journal (one per person)
- Chart Paper
- Vocabulary cards (one set for each group)
- Timer

KEY TERMS

Circuit: a complete and closed path around which electricity can flow.

Closed Circuit: an endless path for electricity to flow.

Conductor: an object or material that allows the flow of electrical current in one or more directions.

Insulator: an object or material that allows little or no electricity to go through.

Negative: the negative pole of a storage battery.

Open Circuit: an electric circuit that is not complete.

Parallel Circuit: a circuit which has two or more paths for electricity to flow.

Polarity: attraction toward a particular object or in a specific direction.

Positive: the positive pole of a storage battery

Series Circuit: an electrical circuit in which electricity passes through components following one path.

Short Circuit: the failure of electricity to flow properly.

PREPARATION

Copy Snap Journals for the class. On chart paper, write the challenge and requirements. Have a copy of the vocabulary cards cut out for each group.

LAUNCH 10 to 15 minutes

Have children form groups of 3 to 4. Explain to kids that they will be working together to complete an electricity vocabulary match. Pass out a set of cards to each group. Then, set a timer for five minutes. After kids have discussed and completed the match, ask if they have any questions about the vocabulary words.

EXPLORATION 45 to 90 minutes

Have kids form groups of three to four. Once kids are in groups, explain that they will be exploring and interacting with basic circuitry using Snap Circuits. Introduce the challenge, requirements, and Snap Journal.

CHALLENGE

As a team, think of an improvement to the classroom that could be made with electricity. For example, adding a doorbell to the classroom. Kids will make a model of their circuit using Snap Circuits. Teams will be allowed to use the Electronic Snap Circuits Instruction Manual. However, if the team uses the diagram from the manual to create the circuit, an additional change or modification must be made.

Requirements:

- · Groups will present their design.
- · All kids will complete a Snap Journal.
- Each group member will be responsible for answering one or more of the following questions during the presentation:
 - What is your new Snap Circuit design that improved your classroom?
 - Explain and demonstrate how the circuit works.
 - How did your team decide on this design?
 - If you used the manual diagram, what modification did your team make?
 - Were there any challenges your team faced with this activity?
 - How did your team address these challenges?

CLOSING 15 to 25 minutes

Allow each team 3 to 5 minutes to present.

ELECTRICAL VOCABULARY

Circuit	a complete and closed path around which electricity can flow	Closed Circuit	an endless path for electricity to flow
Short Circuit	the failure of electricity to flow properly	Series Circuit	an electrical circuit in which electricity passes through components following one path
Positive	the positive pole of a storage battery	Conductor	An object or material that allows the flow of electrical current in one or more directions
Insulator	an object or material that allows little or no electricity to go through	Negative	the negative pole of a storage battery
Open Circuit	an electric circuit that is not complete	Parallel Circuit	a circuit which has two or more paths for electricity to flow
Polarity	Attraction toward a particular object or in a specific direction		

GET SNAPPED WITH SNAP CIRCUITS 5

OVERALL TIME 60- to 120-minute lesson

GROUPS Three to four kids per kit

Next Generation Science Standards

4PS3-4 Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. (Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound.) (4PS3 Energy)

OBJECTIVE

- Identify and construct different types of circuits.
- Make connections to energy sources in real life.

MATERIALS

- Snap Circuit Kit (one per group)
- Snap Journal (one per person)
- Chart Paper
- Markers
- Masking Tape

PREPARATION

Copy Snap Journals for the class. On chart paper, write the challenge and requirements.

LAUNCH 5 to 15 minutes

Have kids form groups of three to four. Provide each group with a piece of chart paper and markers. Explain to kids that they will have ten minutes to create a list of as many electricity words as possible. When the ten minutes are up, have kids display their posters on the wall.

Then, have groups participate in a Gallery Walk to view all posters.

Choose a few kids to respond to the following questions:

- Did you notice any words that appeared on every list?
- Is there a word that stuck out for you during the Gallery Walk? What word? Why?

EXPLORATION 45 to 90 minutes

Explain to kids that they will be exploring and interacting with basic circuitry to create a new circuit using Snap Circuits. Groups will remain the same for the challenge. Introduce the challenge, requirements, and Snap Journal.

CHALLENGE

Design your own Snap Circuit.

Requirements:

- · Groups will present their design.
- All kids will complete a Snap Journal.
- Each group member will be responsible for answering one or more of the following questions during the presentation:
 - What is your new Snap Circuit design that improved your classroom?
 - Explain and demonstrate how the circuit works.
 - How did your team decide on this design?
 - Were there any challenges your team faced with this activity?
 - How did your team address these challenges?

CLOSING 15 to 30 minutes

Allow each team 3 to 5 minutes to present.

EDUCATIONAL PRINCIPLES BEHIND STEM EDUCATION

EDUCATIONAL PRINCIPLES BEHIND STEM EDUCATION

Ripken Foundation STEM Centers allow kids to learn and explore their curiosities without the confines of standardized lesson plans and testing. This curriculum guidebook is designed to give you background on the supplies we have provided, along with a set of lessons to enrich your mentoring program.

To help you curate a successful STEM program, we have provided a selection of tools that will strengthen your skills as a STEM mentor. Having these tools in your back pocket will enrich your understanding of the best practices which will enable you to teach important principles while having fun! Remember, some of these tools youth have already encountered in the classroom, so using them in afterschool mentoring programs will reinforce the skills and instill the confidence kids need to excel in STEM subjects, leading to careers in related fields.

HANDS-ON LEARNING

Hands-on learning is a key component of the Ripken Foundation STEM Centers. By having kids actively participating in a hands-on learning experience, you foster skills of inquiry, self-discovery, and problem solving, all while learning science, technology, engineering, and mathematics concepts.

The Experiential Learning Model shows how learning occurs with hands-on experiences. This model, based on the work of D.A. Kolb (1984), works on three basic principles: Do, Reflect, Apply.

Do:

Instruct the kids to conduct an activity. Kids are directly involved in the process by conducting experiments, designing solutions, and testing out ways to answer questions.

Reflect:

Ask questions to help the kids process the experience they just had. The questions offer a chance to delve deeper into the activity and understand concepts they can take away from the experience.

Apply:

Discuss other ways they can use the skills learned with other activities and experiences. The skills developed with one activity transfer to many different applications.

For example - you want your kids to build a garden. They learn how to sow seeds and care for plants, but they also learn how to plan ahead and use resources wisely. These skills developed in the garden will apply on their next project building birdhouses and beyond.

Do

Apply

Reflect

INQUIRY-BASED LEARNING

The Inquiry-based learning process allows kids to learn and grow in a supportive environment that gives them the opportunity to explore their curiosities through facilitated activities that incorporate "free play." Lessons usually begin with an introduction of concepts providing the educational background for activities. You can provide parameters and limitations such as time, budget, limited supplies, real world applications, etc. to give a context for the activities they are about to complete. After providing constructs, task kids with an open-ended challenge that allows them to explore and learn as needed within the constructs. Inquiry-based learning provides some structure for the kids on the front end, while allowing for the kids to arrive at a solution on their own or as a group.

For example - you task the kids with building the tallest tower they can in 10 minutes using only a limited number of index cards and straws. You provided the time and materials constraints, as well as gave them a goal, but left the design, use of materials, and actual construction up to the kids.

ENGINEERING DESIGN PROCESS

The Engineering Design Process (EDP) is a tool to assist with facilitation of problem solving. Children are presented with a scenario or problem, and they follow the steps of the engineering design process to imagine, create, and improve upon a solution to the issue at hand.

To help put this in context of classroom facilitation, we have created an example problem: Ellie and Henry are trying to grow three tomato plants. All three plants need to get water at the same time, but they only have one watering can. The six steps to the Engineering Design Process are as follows:

Ask:

Define the problem to address.

Scenario: We need to water three plants with one watering can.

Imagine:

Conceptualize and brainstorm ideas of possible solutions.

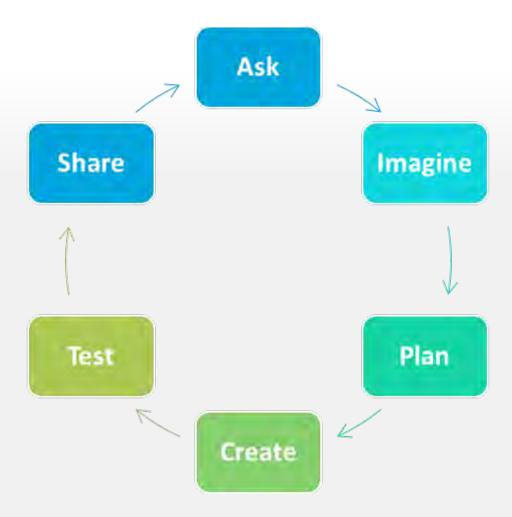
Scenario: How can we have the water come from one can but go three different places?

Plan:

Draw out sketches to visualize ideas including notes for assembly and constructing a model.

Scenario: Henry sketched out a picture of possible contraptions to add to the watering can. Ellie then built a working model based off Henry's drawing.

Test:


Conduct testing to determine if the plan meets the needs and solves the problem. Testing can identify improvements that need to be made and kids can go through the EDP until they are happy with a solution.

Scenario: Henry and Ellie tested their design to see if it worked. It didn't work, so they looked at the drawing and modified their model until it did what they wanted!

Share:

Engineering is a collaborative process. Kids can work in groups to create plans together, or they can offer feedback at the end.

Scenario: Ellie and Henry shared their design with their classmates, so everyone could use it and got feedback on how to make it better.

SCIENTIFIC METHOD

The Scientific Method is a process used to conduct science experiments through a logical process of problem solving and observation to help answer a question. The questions can be as simple or as complicated as you would like. Some experiments solve problems while others simply exist to satisfy a curiosity. The scientific method helps us with these questions through a step-by-step process to gather facts and arrive at an answer.

To help explain, we will follow up with Ellie and Henry's plants. They water them every day, but their plants are wilting and not growing. Ellie wants Henry's help to figure out why their plants are not growing.

Purpose

- State the problem or what you want to discover.
 - What is the question the experiment will address?
- The plants are wilting even though Ellie and Henry water them every day, why is this happening?

Research

- Make observations about an issue or situation.
 - What is already known? What are you observing?
- . What potential causes of the problem can you rule out?
- Ellie thought, "My plants get water and sunshine, but what if I am watering them too much?"

Hypothesis

- Predict the outcome to the problem in a testable statement.
 - Create a statement that predicts the solution usually written as an "if...then" statement.
 - Use the research and observations to make an educated guess as to what will happen.
 - Henry poses "If we only water our plants once a week, then they will grow?"

Experiment

- Develop a procedure to test the hypothesis.
- Define a step-by-step plan to follow to ensure consistency in carrying out the testing.
- Henry and Ellie plan to use their three tomato plants. For one month, they will water one
 every day, one three times a week, and one, once a week. Ellie and Henry observed their
 plants twice a day and measured the height of each plant.

Analys

- · Record the results of the experiment.
 - . Keep track of the testing results and interpret them.
 - At the end of the month, Ellie and Henry saw the plant that was watered every day did not grow, the plant watered three times a week grew one inch but was still somewhat wilted, and the plant watered once a week grew three inches and was standing tall.

Conclusion

- Compare hypothesis to the results of the experiment.
 - . Did the results of the experiment support the hypothesis? Why or why not?
 - Ellie and Henry changed their plans and now only water their plants once per week as the
 experiment supported their hypothesis that watering the plants less than once per day
 would make their plants grow.

These resources listed are websites and products that exist which could assist with facilitation of STEM programming.

CODING AND COMPUTER SCIENCE

Code Academy - learn coding for free

http://www.CodeAcademy.com

Code.org - learn coding and programming with popular characters and games

http://www.Code.org

Scratch Visual, Block-based programming language

http://scratch.MIT.edu

Khan Academy Computer Science Courses

http://www.KhanAcademy.org/CS

CodeCombat.com - game using coding principles, free and paid versions

http://www.CodeCombat.com

Mozilla Thimble - online code editor teaching HTML, CSS, and JavaScript

http://https://thimble.mozilla.org/en-US

Applnventor.org - learn to build Android apps

http://www.AppInventor.org

GameBlox - create and edit games with code

http://gameblox.org

MIT App Inventor

http://appinventor.mit.edu/explore

ROBOTICS

Robotics activities come in all shapes and sizes. Here are a few resources to research if interested in starting a robotics program!

LEGO Mindstorms

SeaPerch

NASA Robotics

http://nasa.gov/audience/foreducators/robotics http://robotics.nasa.gov

Sphero

VEX Robotics

3-D PRINTING

TinkerCAD - online 3D design program. Offers free lessons and design tools

http://www.TinkerCAD.com

Thingverse - website with 3D design files to download and print on your own

http://www.Thingiverse.com

Tinkerine U - online lessons to introduce 3D printing. Has challenges and ideas for kids to design

http://www.u.tinkerine.com

SketchUp - 3D design software, has both a free and paid version

http://www.SketchUp.com

Biological and Earth Sciences

Howard Hughes Medical Institute

· www.hhmi.org/biointeractive

EarthWatch Institute

http://earthwatch.org/Education

Earth Science Activities & Experiments

http://www.Education.com/activity/earth-science

MATH

MathChip - math games and activities

http://www.MathChimp.com

STEMCollaborative.org - math games

http://www.STEMCollaborative.org

Adventures in Math

http://www.scholastic.com/regions

Math Playground - math games and activities

http://www.MathPlayground.com

MathSnacks.com - math games and videos

http://mathsnacks.com/

TECHNOLOGY AND ENGINEERING

Engineering.com - news and articles related to engineering

http://www.Engineering.com

Rube Goldberg Challenges - create elaborate inventions to accomplish a simple task!

http://www.RubeGoldberg.com

Engineering is Elementary - lessons and activities for educators available for purchase

http://www.eie.org

TryEngineering.org - information and lesson plans related to engineering

http://www.TryEngineering.org

TeachEngineering.org - lesson plans and activities that tie into the Next Generation Science Standards

http://www.TeachEngineering.org

PHYSICAL AND CHEMICAL SCIENCES

PhysicsGames.net - games related to physics

http://www.Physicsgames.net

Science Kids - simple experiments and activities

http://www.ScienceKids.co.nz/physics.html

myPhysicsLab.com - interactive online physics simulations

http://www.MyPhysicsLab.com

Algodoo - free physics simulation software

http://www.algodoo.com

ChemCollective.org - online simulations and experiments related to chemistry

http://www.chemcollective.org/

GENERAL STEM RESOURCES

STEM Works - articles, activities, and information about all things STEM!

http://www.STEM-works.com

New Mexico State University Learning Games Lab- fun and educational games on a variety of topics

http://www.LearningGamesLab.org

4-H National Youth Science Experiment - a new experiment released annually related to various STEM concepts

http://www.4-h.org/NYSD

Magic School Bus - games, activities, and stories on a wide variety of topics

http://www.Scholastic.com/MagicSchoolBus

National Geographic Kid's Website

http://Kids.NationalGeographic.com

IXL.com - quizzes and activities to reinforce concepts and skills across disciplines. A preview is free but full site use requires subscription

http://www.ixl.com

PBS - The Public Broadcasting Service has several pages related to education and learning

- http://www.PBSLearningMedia.org
- http://www.PBSKids.org/DesignSquad
- http://www.PBSKids.org/

BrainPOP - online educational videos and games. Some videos and games are free, but most require a subscripton

- http://www.BrainPOP.com
- http://www.brainpop.com/games/

Makerspace.com - Online community for the Maker movement of invention and creativity. Get and share ideas of what to create and make next!

http://www.MakerSpace.com

SEA Research's STEM Mentoring Program

http://stemmentoringprogram.org/

Common Sense Media – resource with ratings and information on various technology media such as games, cyber safety, and other web resources

https://www.commonsensemedia.org/

You are on the front lines, empowering kids in your community each and every day. You're there through life's challenges, just as Cal Ripken, Sr. was for his kids and his players: teaching them how to make the best of every situation, leading by example, and encouraging them to swing for the fences.

At the Cal Ripken, Sr. Foundation, we see our role as supporting you in this shared mission. This guidebook is just a stepping-stone to start your STEM program! We hope you find ways to expand and keep your program going in perpetuity. Here are some resources to encourage program growth.

ADDITIONAL CAL RIPKEN, SR. FOUNDATION RESOURCES

For more information about the Cal Ripken Sr. Foundation, visit our website at

http://www.ripkenfoundation.org

Follow us on twitter at http://www.twitter.com/CalRipkenSrFdn

Find us on Facebook at http://www.facebook.com/CalRipkenSrFdn

Check out our YouTube Channel at http://www.youtube.com/CalRipkenSrFdn

ACKNOWLEDGEMENTS

We would like to thank all of our sponsors for their support.